Calcium glycerophosphate
Phân loại:
Thành phần khác
Mô tả:
Calcium Glycerophosphate là gì?
Calcium glycerophosphate là muối canxi của axit glycerophosphoric tạo thành bột màu trắng, mịn, hơi hút ẩm. Sản phẩm thương mại là một hỗn hợp của canxi beta-, D- và L -alpha-glycerophosphat.
Calcium glycerophosphate được FDA xếp vào danh sách thành phần thực phẩm công nhận là an toàn (GRAS) như một chất bổ sung chất dinh dưỡng (nguồn canxi hoặc phốt pho). Trong các sản phẩm thực phẩm như gelatins, bánh pudding và chất trám chúng ta đều có thể tìm thấy thành phần calcium glycerophosphate.
Bên cạnh đó, calcium glycerophosphate cũng có trong các sản phẩm chăm sóc răng miệng hoặc vệ sinh răng miệng nhờ khả năng có thể thúc đẩy quá trình đệm-pH của mảng bám, nâng cao mức độ canxi và phosphat trong mảng bám và tương tác trực tiếp với khoáng chất nha khoa.
Cơ chế hoạt động
Khi kết hợp với natri monofluorophosphat, calcium glycerophosphate sẽ làm giảm khả năng hòa tan axit của men răng. Bên cạnh đó, calcium glycerophosphate cũng được cho sẽ làm tăng tác dụng tái khoáng của natri monofluorophosphate dẫn đến quá trình tái khoáng hóa men răng nhiều hơn nhưng cơ chế đằng sau điều này vẫn chưa được biết rõ.
Ngoài ra, calcium glycerophosphate còn làm giảm độ pH mảng bám được tạo ra bởi dung dịch đường sucrose. Trong chất thay thế điện giải, calcium glycerophosphate lại hoạt động như một chất cho canxi và photphat.
Dược động học:
Dược lực học:
Xem thêm
Tên gọi, danh pháp
Tên Tiếng Việt: Sâm bố chính.
Tên khác: Sâm báo, Thổ hào sâm.
Tên khoa học: Abelmoschus sagittifolius, thuộc họ Malvaceae.
Đặc điểm tự nhiên
Sâm bố chính là một loài cây thân thảo, sống lâu năm cao từ 30-50 cm, mọc đứng một cách yếu ớt có khi dựa vào những cây xung quanh. Thân cành có thể mọc đứng cũng có khi bò lan tỏa ra mặt đất, cành hình trụ và không có lông. Lá đơn, mọc cách, có lá kèm hình chỉ. Các lá càng lên phía ngọn cây thì càng hẹp, phiến lá xẻ thùy 3-5 hoặc dạng mũi mác, mép lá có răng cưa thưa và đều, hai mặt có lông.

Rễ phát triển thành củ hình trụ, màu trắng hoặc vàng nhạt, đường kính từ 1,5-2 cm. Hoa màu sâm bố chính màu đỏ hoặc hồng mọc đơn độc ở kẽ lá, cuống hoa dài từ 5-8 cm, có lông cứng. Quả hình trứng nhọn, dài gấp 3 lần đài, có khía dọc, quả nang, khi quả chín thì các lớp vỏ quả khô lại và mở ra bằng đường nứt theo khía dọc thành 5 mảnh vỏ, hai mặt đều có nhiều lông hình sao.
Quả chín có màu đen nhạt. Hạt hình thận, dài 2-3 mm, có lông tơ, lúc xanh có màu xanh nhạt, chín có màu nâu đen, mặt ngoài có những đường vân tạo thành những gợn hay những ụ màu vàng.
Phân bố, thu hái, chế biến
Phân bố: Sâm bố chính phân bố ở Úc và Châu Phi cũng như các vùng nhiệt đới và cận nhiệt đới châu Á như Trung Quốc, Ấn Độ và các nước Đông Nam Á.
Thu hái: Rễ sâm bố chính thu hái vào mùa thu đông cụ thể vào các tháng 11-12 và tháng 1-2.

Chế biến: Sâm bố chính có nhiều cách chế biến khác nhau. Có nơi đào rễ về thì cắt bỏ thân ở trên, cạo sạch vỏ ngoài, ngâm nước vo gạo một đêm rồi vớt ra để khô. Sau đó đồ cho chín rồi phơi nắng hoặc sấy cho thật khô. Có nơi đào rễ về cắt bỏ thân cạo sạch vỏ ngoài rồi phơi qua ngày rồi mang đi sấy cho thật khô. Cũng có nơi đào rễ về cắt bỏ thân và rễ con, rửa sạch ngâm vào nước phèn chua hai ngày hai đêm (cứ 10kg rể dùng 300g phèn chua tán nhỏ), rửa sạch phơi nắng hay sấy khô. Có nơi còn ngâm thêm nước gừng, gấc và đường cho thêm màu đỏ, vị cay và vị ngọt giúp tăng tác dụng điều trị và dễ uống.
Bộ phận sử dụng
Rễ củ của sâm bố chính (Radix Abelmoschi sagittifolii).
Diosmetin là gì?
Trong trái cây thuộc họ cam quýt có hoạt chất Diosmetin là một flavone O-methyl hóa. Hoạt chất này cũng là phần aglycone của flavonoid glycosides diosmin. Diosmetin về mặt dược lý có báo cáo cho là có các hoạt động chống oxy hóa, chống ung thư, kháng khuẩn và có thể chống viêm nhiễm. Diosmetin có tên hóa học là 3 ', 5,7-trihydroxy-4'-methoxyflavone, hoạt chất hoạt động như một chất chủ vận thụ thể TrkB yếu. Thành phần này là bột màu vàng, có thể tan chảy ở nhiệt độ 256 ~ 258℃ và có công thức phân tử là C16H12O6.
Từ những năm 1920, một số nghiên cứu về diosmetin bắt đầu sau khi diosmin được phân lập từ cây sung. Vào năm 1969, diosmin được giới thiệu như một loại thuốc. Sau đó có một số nghiên cứu chỉ ra rằng flavone glycoside này có thể giúp điều trị các bệnh mạch máu. Mối quan tâm lớn về tiềm năng điều trị của loại thuốc này hiện nay, như là một phương pháp điều trị thay thế cho một số bệnh ung thư.
Điều chế sản xuất Diosmetin
Diosmetin được điều chế từ diosmin, hoạt chất được phân lập từ những nguồn thực vật khác nhau ở những trái cây họ cam quýt.
Cơ chế hoạt động của Diosmetin
Diosmetin được chuyển hóa thành flavone luteolin có cấu trúc tương tự trong tế bào MDA-MB 468, trong khi không thấy chuyển hóa trong tế bào MCF-10A.
Diosmetin có các chất chuyển hóa ở người đã biết bao gồm (2S, 3S, 4S, 5R) -3,4,5-Trihydroxy-6- [5-hydroxy-2- (3-hydroxy-4-methoxyphenyl) -4-oxochromen-7- yl] axit oxyoxan-2-cacboxylic.
Nhiều loại khối u khác nhau được biết đến là do các enzym biểu hiện quá mức thuộc họ CYP1 của tế bào sắc tố P450. Trong nghiên cứu mô tả sự chuyển hóa, hoạt động chống tăng sinh của flavonoid diosmetin tự nhiên trong dòng tế bào u gan người biểu hiện CYP1, HepG2. Diosmetin được chuyển đổi thành luteolin trong tế bào HepG2 sau 12 và 30 giờ ủ. Khi có mặt chất ức chế CYP1A alpha-naphthoflavone, việc chuyển đổi diosmetin thành luteolin bị giảm độc lực. Thử nghiệm 3- (4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide cho thấy luteolin độc tế bào hơn diosmetin.
Tác dụng chống tăng sinh của diosmetin trong tế bào HepG2 được cho là do sự tắc nghẽn ở pha G2/M được xác định bằng phương pháp đo tế bào dòng chảy. Cảm ứng bắt giữ G2/M đi kèm với sự điều hòa lên của kinase điều hòa tín hiệu ngoại bào (p-ERK), phospho-c-jun N-terminal kinase, p53 và p21. Quan trọng hơn, cảm ứng bắt giữ G2 / M và điều hòa tăng p53 và p-ERK đã bị đảo ngược khi áp dụng chất ức chế CYP1 alpha-naphthoflavone. Kết hợp với nhau, dữ liệu cung cấp bằng chứng mới về vai trò ức chế khối u của enzym cytochrom P450 CYP1A và mở rộng giả thuyết rằng hoạt động chống ung thư của flavonoid trong chế độ ăn được tăng cường nhờ kích hoạt P450.
Coumarin là gì?
Coumarin là một hợp chất hóa học hữu cơ có công thức C9H6O2. Phân tử của nó có thể được miêu tả như một phân tử benzen với hai nguyên tử hydro liền kề được thay thế bằng một vòng lacton không bão hòa tạo thành một vòng sáu nguyên tử chứa hai nguyên tử cacbon chung với vòng benzen.
Coumarin thuộc lớp hóa chất benzopyrone và được coi là một loại lactone. Nó là một chất kết tinh màu trắng đục có mùi ngọt giống hương vani và vị đắng. Coumarin được tìm thấy trong nhiều loại thực vật với vai trò phòng vệ hóa học chống lại kẻ thù.

Điều chế sản xuất Coumarin
Coumarin được tìm thấy tự nhiên trong đậu tonka. Tuy nhiên, Coumarin có thể được điều chế thông qua một số phản ứng hóa học:
- Phản ứng Perkin: Sử dụng salicylaldehyde và anhydrid acetic để tạo ra một vòng lacton không bão hòa hình thành cấu trúc của Coumarin.
- Phản ứng Pechmann: Tạo ra Coumarin và các dẫn xuất của nó cũng là một phương pháp điều chế hiệu quả.
Cơ chế hoạt động
Coumarin có nhiều hoạt động sinh học giúp phòng bệnh, điều tiết sự tăng trưởng và đặc tính chống oxy hóa, kích thích bài tiết insulin,... tạo nên các tác dụng của Coumarin.
Dipotassium Glycyrrhizate là gì?
Dipotassium glycyrrhizate (DPG) là muối kali của acid glycyrrhizic (glycyrrhizin) – thành phần chính trong chiết xuất rễ cây cam thảo Glycyrrhiza glabra, họ đậu Fabaceae.
Trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, các nhà sản xuất đã đưa vào Dipotassium glycyrrhizate nhằm mục đích nuôi dưỡng, kháng viêm và làm dịu da, đồng thời cũng là chất nhũ hóa và tạo gel cho sản phẩm. Dipotassium Glycyrrhizate có tác dụng dưỡng da, giúp làm dịu làn da bị kích ứng và hỗ trợ cải thiện kết cấu công thức.
Dipotassium Glycyrrhizate phù hợp với mọi loại da, trừ những người được xác định là dị ứng với nó. Tuy nhiên, nhược điểm của Dipotassium glycyrrhizate là không được hấp thụ tốt vào da.
Bên cạnh đó, từ hàng nghìn năm trước, chiết xuất rễ cây cam thảo đã được sử dụng trong y học cổ truyền Trung Quốc với công dụng nổi tiếng là làm dịu vùng mô bị viêm cũng như hỗ trợ loại bỏ đờm và chất nhầy ra khỏi đường hô hấp. Do đó, cam thảo có thể chữa được mọi thứ từ cảm lạnh thông thường cho đến bệnh gan.
Điều chế sản xuất Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là hoạt chất tinh chế từ rễ cam thảo, dạng bột, tan nước có khả năng kháng viêm tốt. Nhiều người sẽ lầm tưởng bột cam thảo nào cũng có tác dụng kháng viêm và giảm kích ứng tốt như nhau nhưng Dipotassium Glycyrrhizinate là thành phần chiết xuất đặc biệt của cam thảo, chỉ lấy những phần cần thiết trong cam thảo để phục vụ mục đích kháng viêm, kháng khuẩn, làm trắng và chống kích ứng da thôi, nên hiệu quả nó vượt trội so với bột cam thảo hay nước chiết xuất cam thảo bình thường.
Cơ chế hoạt động của Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là một chất chống viêm được sử dụng rộng rãi được phân lập từ rễ cây cam thảo. Nó được chuyển hóa thành Glycyrhetinic Acid, ức chế 11-beta-Hydroxysteroid Dehydrogenases và các enzym khác liên quan đến quá trình chuyển hóa Corticosteroids.
Dipotassium Glycyrrhizinate có khả năng làm sáng da đáng kể nhờ vào việc ức chế sắc tố, phân tán melanin, ức chế sinh tổng hợp melanin và ức chế enzym cyclooxygenase. Nói dễ hiểu thì Dipotassium Glycyrrhizinate ức chế không cho melanin di chuyển và xuất hiện trên bề mặt da.
Cinnamaldehyde là gì?
Cinnamaldehyde còn được gọi là Aldehyde cinnamic; 3-phenyl-2-propan; Anđehit cinnamyl; Phenylalacrolein; quế chi và trans-cinnamaldehyde. Đây là thành phần có trong vỏ của cây quế (Cinnamomum zeylanicum), xuất xứ từ Sri Lanka và Ấn Độ và được trồng ở Brazil, Jamaica và Mauritius. Cinnamaldehyde cũng được tìm thấy trong các thành viên khác của loài Cinnamomum bao gồm cả cây cassia và long não.
Có công thức hóa học là C6H5CH = CHCHO, Cinnamaldehyde là một hợp chất hữu cơ xuất hiện tự nhiên chủ yếu là đồng phân trans (E), mang lại hương vị và mùi cho quế.
Đây là một Phenylpropanoid được tổng hợp tự nhiên bằng con đường sinh tổng hợp Shikimat, tồn tại dưới dạng chất lỏng nhớt, màu vàng nhạt. Tinh dầu của vỏ quế chứa khoảng 90% là Cinnamaldehyde.
Công thức phân tử của Cinnamaldehyde được xác định vào năm 1834 bởi các nhà hóa học người Pháp Jean Baptiste André Dumas (1800–1884) và Eugène Melchior Péligot (1811–1890) và mặc dù công thức cấu trúc của nó chỉ được giải mã vào năm 1866 bởi nhà hóa học người Đức Emil Erlenmeyer (1825– Năm 1909).
Điều chế sản xuất
Có nhiều cách để điều chế Cinnamaldehyde. Thành phần này được điều chế thương mại bằng cách xử lý vỏ cây Cinnamomum zeylanicum với hơi nước. Anđehit hòa tan trong hơi nước, sau đó Cinnamaldehyde được chiết xuất khi hơi nước nguội đi và ngưng tụ lại để tạo thành nước lạnh, trong đó hợp chất ít hòa tan hơn nhiều.
Cinnamaldehyde cũng có thể được tổng hợp bằng cách cho phản ứng giữa Benzaldehyde (C6H5CHO) với Acetaldehyde (CH3CHO). Hai hợp chất ngưng tụ sau khi loại bỏ nước để tạo thành Cinnamaldhyde.
Năm 1834, Cinnamaldehyde được phân lập từ tinh dầu quế bởi Jean-Baptiste Dumas và Eugène-Melchior Péligot và được nhà hóa học người Ý Luigi Chiozza tổng hợp trong phòng thí nghiệm vào năm 1854.
Tinh dầu quế được chiết xuất từ vỏ cây quế với thành phần chính là Cinnamaldehyde. Có hai cách để chiết xuất được tinh dầu quế từ vỏ quế: Đó là công nghệ chưng cất hơi nước và chiết xuất qua dung môi. Nhưng để đạt thành phần Cinnamaldehyde lên đến 90% thì phải sử dụng công nghệ chưng cất hơi nước, còn với công nghệ chiết xuất qua dung môi chỉ đạt được 62 % đến 73 % tỉ lệ Cinnamaldehyde.
Cơ chế hoạt động
Nhiều dẫn xuất của Cinnamaldehyde có ích về mặt thương mại. Rượu Dihydrocinnamyl, xuất hiện tự nhiên nhưng được sản xuất bằng cách hydro hóa gấp đôi Cinnamaldehyd, được sử dụng để tạo ra mùi thơm của lục bình và hoa cà. Rượu Cinnamyl cũng tương tự và có mùi của hoa cà, có thể được sản xuất bắt đầu từ Cinnamaldehyd. Dihydrocinnamaldehyd được tạo ra bởi quá trình hydro hóa chọn lọc của tiểu đơn vị kiềm.
Diacetyl boldine là gì?
Diacetyl boldine là hoạt chất được gọi là DAB hoặc bằng tên thương hiệu Lumiskin, có nguồn gốc từ cây Boldo ở miền trung Chile nhưng có thể được tìm thấy ở các vườn bách thảo châu Âu và Bắc Phi.
Lá của cây Boldo có mùi hương tương tự như long não và thường được sử dụng để nấu ăn hoặc như một loại trà thảo mộc thường được pha với Yerba Mate. Ở Brazil, Boldo được phân loại là một loài thực vật trị liệu và được sử dụng để điều trị chứng khó tiêu nhẹ.
Tại Pháp và Braxin, cây Boldo được sử dụng như một loại thảo dược để chữa bệnh khớp, gout, rối loạn gan và viêm tuyến tiền liệt.
Boldo trong lịch sử đã được sử dụng như một loại thuốc bổ gan và điều trị sỏi mật của người Chile bản địa.
Điều chế sản xuất
Chất Diacetyl boldine được chiết xuất từ vỏ của cây Boldo.
Cơ chế hoạt động
Diacetyl boldine ức chế Tyrosinase, tác động lên cơ chế sản sinh Melanin, dẫn đến làm sáng da và thay đổi tông màu da khiến da đều màu và trở nên đẹp tự nhiên hơn.
Boron Nitride là gì?
Boron Nitride là hợp chất không quá xa lạ với phái đẹp bởi loại hợp chất tạo hiệu ứng chiếu sáng này là một thành phần được sử dụng rộng rãi trong ngành công nghiệp mỹ phẩm. Ở điều kiện thường, Boron Nitride ở dạng bột màu trắng giống như bột talc, có thể phản chiếu lấp lánh dưới đèn màu.
Boron Nitride ở dạng bột màu trắng giống như bột talc
Boron Nitride xuất hiện trong các loại sản phẩm như kem nền, phấn phủ, son môi,… nhờ khả năng cải thiện độ láng mịn cho làn da. Đặc điểm nổi trội của Boron Nitride là khả năng liên kết các phân tử nhỏ giúp tăng cường độ bám dính trên bề mặt của các loại mỹ phẩm, giữ cho son môi, phấn phủ, kem nền được giữ lâu hơn và mang lại cảm giác mịn màng, căng bóng cho làn da. Đối với son môi, Boron Nitride là thành phần “vàng” bởi chúng có thể giúp lớp son được phân tán đều trên bề mặt môi mà không tạo cảm giác nhờn, rít.
Boron Nitride - thành phần quen thuộc trong nhiều loại mỹ phẩm
Điều chế sản xuất Boron Nitride
Trong phòng thí nghiệm, Boron Nitride được điều chế từ phản ứng hóa học giữa Boron trioxit (B2O3) hoặc Axit boric (H3BO3) với Amoniac (NH3) hoặc Urê (CO (NH2) 2) trong môi trường Nitơ:
B2O3 + 2NH3 → 2BN + 3 H2O (T =900°C).
B(OH)3 + NH3 → BN + 3H2O (T =900°C).
B2O3 + CO(NH2)2 → 2BN + CO2 + 2H2O (T >1000°C).
B2O3 + 3CaB6 + 10N2 → 20BN + 3CaO (T >1500°C).
Cơ chế hoạt động của Boron Nitride
Boron Nitride tồn tại ở nhiều dạng khác nhau, tương tự như dạng cấu trúc của Carbon. Hợp chất này hoạt động như một chất khoáng trong mỹ phẩm cải thiện khả năng bám dính của mỹ phẩm trên da.
Diazolidinylurea là gì?
Diazolidinylurea là một chất bảo quản kháng khuẩn được sử dụng trong mỹ phẩm. Nó có liên quan về mặt hóa học với imidazolidinylurea được sử dụng theo cách tương tự. Diazolidinylurea hoạt động như một chất khử formaldehyde. Mặc dù điều đó nghe có vẻ đáng sợ, nhưng lượng formaldehyde thải ra vẫn thấp hơn nhiều so với giới hạn tiếp xúc được khuyến nghị. Hơn nữa, các thành phần khác (chẳng hạn như protein) trong sản phẩm làm cho formaldehyde tự do bay hơi và không hoạt động trước khi có thể gây hại cho da.
Tên IUPAC của Diazolidinylurea: 1- [3,4-bis (hydroxymetyl) -2,5-dioxoimidazolidin-4-yl] -1,3-bis (hydroxymetyl) urê (mới), 1- [1,3-bis (hydroxymetyl) -2,5-dioxoimidazolidin-4-yl] -1,3-bis (hydroxymetyl) urea (cũ). Công thức hóa học của Diazolidinylurea là C8H14N4O7. Khối lượng mol 278,22 g/mol.

Công thức hóa học của Diazolidinylurea là C8H14N4O7
Điều chế sản xuất Diazolidinylurea
Diazolidinylurea được tạo ra bởi phản ứng hóa học của allantoin và formaldehyde khi có mặt của dung dịch natri hydroxit và nhiệt. Hỗn hợp phản ứng sau đó được trung hòa bằng axit clohydric và làm bay hơi:
Allantoin + 4 H2C = O → Diazolidinylurea.
Cơ chế hoạt động
Diazolidinylurea là một chất bảo quản kháng khuẩn hoạt động bằng cách tạo thành formaldehyde trong các sản phẩm mỹ phẩm.
Một phần gây tranh cãi, nó thuộc về một gia đình nổi tiếng của formaldehyd. Đó là, nó từ từ phá vỡ để tạo thành formaldehyd khi nó được thêm vào một công thức.
Butylated Hydroxytoluene là gì?
Butylated hydroxytoluene là một hợp chất hữu cơ lipophilic, tan kém trong nước nhưng có thể tan trong chất béo.
Butylated hydroxytoluene tồn tại ở dạng tinh thể, màu trắng, không mùi. Hóa chất này chủ yếu được sử dụng như một chất chống oxy hóa phụ gia thực phẩm trong các sản phẩm có chứa chất béo, dầu; đồng thời nó cũng được dùng rất phổ biến trong mỹ phẩm và dược phẩm.
Butylated hydroxytoluene còn được dùng trong điều trị mụn do dậy thì hoặc hội chứng suy giảm miễn dịch mắc phải (AIDS). Ngoài ra, trong một số trường hợp viêm loét butylated hydroxytoluene còn có thể dùng trực tiếp trên da nhờ cơ chế phá hủy lớp biểu bì bên ngoài của các tế bào virus. Mầm bệnh được ngăn chặn, không có cơ hội phát triển, ký sinh.
Điều chế sản xuất Butylated Hydroxytoluene
Butylated hydroxytoluene về mặt hóa học vẫn là một dẫn xuất của phenol. Trong tự nhiên, thực vật phù du, tảo xanh và ba loại vi khuẩn lam khác nhau có khả năng tạo ra butylated hydroxytoluene.
Butylated hydroxytoluene cũng có thể được tổng hợp nhân tạo. Người ta tiến hành điều chế bằng phản ứng của p-cresol (4-methylphenol) với isobutylene (2-methylpropene) xúc tác bởi axit sulfuric:
CH3(C6H4)OH + 2CH2 = C(CH3)2 → CH3)3C)2CH3C6H2OHCH3(C6H4)OH ((CH3)3C)2CH3C6H2OHCH3(C6H4)OH + 2CH2 = C(CH3)2 → H3)3C)2CH3C6H2OH
Ngoài ra, BHT được lấy từ 2,6-di-tert-butylphenol hydroxymethylation hoặc aminomethylation trong phản ứng thuỷ phân. Approximately 4 M kg/y là sản phẩm.
Cơ chế hoạt động của Butylated Hydroxytoluene
Tương tự như cơ chế tự tổng hợp của vitamin E, butylated hydroxytoluene cũng tạo cơ thế hoạt động như thế để ngăn ngừa quá trình oxy hóa diễn ra thông qua việc nhường một nguyên tử hydro – chất chuyển đổi các gốc peroxy thành hydroperoxide.
Butylated hydroxytoluene còn được đánh giá cao như một chất liên hợp với những chất chống oxy hóa khác.
Caprylhydroxamic Acid là thành phần trung hòa ion khoáng, nhất là sắt. Được dùng trong vai trò chất bảo quản sản phẩm, Caprylhydroxamic Acid có cơ chế hoạt động như tác nhân phân hủy sinh học, chống nấm mốc.
Trong những sản phẩm mỹ phẩm không sử dụng chất bảo quản, Caprylhydroxamic Acid thường được dùng kết hợp với một loại glycol có khả năng chống vi khuẩn, chẳng hạn như propanediol, để phát huy vai trò bảo quản cho sản phẩm.
Như chúng ta đều biết, các sản phẩm mỹ phẩm có chứa nước, điển hình như kem dưỡng da, sữa rửa mặt, toner,… đều có thể bị nhiễm khuẩn, nấm men và nấm mốc phát triển khiến sản phẩm nhanh bị hư hỏng, biến chất, gây ảnh hưởng đến người sử dụng.
Một khi vi khuẩn, nấm mốc hoặc nấm men xuất hiện trong các sản phẩm chăm sóc cá nhân sẽ làm giảm thời hạn sử dụng. Các thành phần trong sản phẩm bị vi khuẩn phá vỡ khiến sản phẩm kém ổn định, giảm chất lượng. Quan trọng hơn, nhiễm khuẩn, nấm mốc trong sản phẩm có thể đưa đến số rủi ro nghiêm trọng về sức khỏe và làn da.
Do đó, để chắc chắn vi sinh vật không gây ra bất kỳ vấn đề nào cho người sử dụng, các sản phẩm mỹ phẩm cần chứa một số loại chất bảo quản. Caprylhydroxamic Acid có khả năng chống nấm nên được dùng làm chất bảo quản phổ biến để giải quyết các vấn đề nói trên. Không giống như nhiều chất bảo quản khác, Caprylhydroxamic Acid hoạt động hiệu quả ở độ pH trung bình. Chất này có ưu điểm nữa chính là khả năng tương thích với hầu hết các thành phần mỹ phẩm.
Choline là gì?
Choline là một hợp chất hữu cơ tan trong nước, có dạng hợp chất phosphatidycholine nên được tìm thấy trong những thực phẩm chứa chất béo. Choline không phải vitamin hay khoáng chất nhưng có liên quan đến các vitamin khác, cụ thể là folate và phức hợp vitamin B.
Trong cơ thể, choline là một vi chất thiết yếu cần thiết cho nhiều chức năng của cơ thể (hệ thống thần kinh, nội tiết, tiêu hóa và sinh sản,...), đặc biệt là chức năng não cũng như giữ cho sự trao đổi chất hoạt động bình thường.
Choline được sử dụng để tạo ra DNA, hỗ trợ tín hiệu thần kinh và giải độc. Nó cũng giúp dẫn truyền thần kinh và điều khiển cơ bắp. Giữ vai trò quan trọng như vậy nên việc thiếu hụt choline sẽ gây ảnh hưởng cho sức khỏe toàn diện. Dấu hiệu để một người nhận biết cơ thể đang có sự thiếu hụt choline bao gồm:
-
Mệt mỏi, mức năng lượng thấp;
-
Mất trí nhớ;
-
Suy giảm nhận thức;
-
Năng suất học tập kém;
-
Đau cơ;
-
Tổn thương thần kinh;
-
Thay đổi tâm trạng.
Cơ thể chúng ta có thể tự sản xuất choline nhưng là không đủ, thậm chí nhiều người đã bổ sung choline trong chế độ ăn bằng các nguồn thực phẩm giàu choline, tuy nhiên hàm lượng vẫn không đủ đáp ứng khuyến cáo hàng ngày. Điều này xuất phát từ việc một số choline không dễ dàng được hấp thụ. Do đó, ngoài thực phẩm, chúng ta có thể bổ sung choline qua các chế phẩm thực phẩm chức năng chứa choline.
Hiện vẫn chưa có con số chính xác cho biết nên dùng bao nhiêu choline mỗi ngày. Tuy nhiên, các chuyên gia hầu hết đều đồng ý với số lượng dưới đây là đủ để tạo ra lợi ích tối ưu mà không gây hại:
-
Trẻ sơ sinh: 125–150mg;
-
Trẻ em tuổi từ 1-8: 150–250mg;
-
Thiếu niên tuổi từ 8-13: 250–375mg;
-
Nữ giới trên 14 tuổi: 425–550mg;
-
Nam giới trên 14 tuổi: 550mg;
-
Phụ nữ có thai: 450–550mg;
-
Phụ nữ đang cho con bú: 550mg.
Những loại thực phẩm sau đây cung cấp hàm lượng choline cao nhất, đồng thời còn có nhiều chất dinh dưỡng khác: Gan bò, cá hồi, đậu gà, đậu hạt, đậu xanh, đậu nành, trứng, thịt bò, gà tây, ức gà, súp lơ, sữa dê, cải Brussels…
Một số báo cáo cho thấy, choline trong thực phẩm khó được cơ thể hấp thu ngay cả khi ăn chế độ thực phẩm đa dạng. Một số người dù đã tích cực bổ sung choline qua thực phẩm nhưng cơ thể vẫn bị thiếu choline, nhất là với người bị tổn thương gan, uống nhiều rượu bia hay béo phì, đái tháo đường.
Lúc này, bạn có thể choline bằng thực phẩm chức năng sẽ giúp cơ thể bạn dễ dàng hấp thu choline hơn.
Tên thuốc gốc (Hoạt chất)
Clofibrate (Clofibrat)
Loại thuốc
Thuốc chống rối loạn lipid máu (nhóm fibrat).
Dạng thuốc và hàm lượng
Nang 500 mg
Sản phẩm liên quan